Research Feeds

View All
Characterizing the gut microbiota in females with infertility and preliminary results of a water-soluble dietary fiber intervention study A prebiotic dietary pilot intervention restores faecal metabolites and may be neuroprotective in Parkinson’s Disease Diagnosis of the menopause: NICE guidance and quality standards Causes of Death in End-Stage Kidney Disease: Comparison Between the United States Renal Data System and a Large Integrated Health Care System Factors affecting the absorption and excretion of lead in the rat Factors associated with age at menarche, menstrual knowledge, and hygiene practices among schoolgirls in Sharjah, UAE Cadmium transport in blood serum The non-pathogenic Escherichia coli strain Nissle 1917 – features of a versatile probiotic Structured Exercise Benefits in Euthyroid Graves’ Disease: Improved Capacity, Fatigue, and Relapse Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson’s Disease A Pilot Microbiota Study in Parkinson’s Disease Patients versus Control Subjects, and Effects of FTY720 and FTY720-Mitoxy Therapies in Parkinsonian and Multiple System Atrophy Mouse Models Dysbiosis of the Saliva Microbiome in Patients With Polycystic Ovary Syndrome Integrated Microbiome and Host Transcriptome Profiles Link Parkinson’s Disease to Blautia Genus: Evidence From Feces, Blood, and Brain Gut microbiota modulation: a narrative review on a novel strategy for prevention and alleviation of ovarian aging Long-term postmenopausal hormone therapy and endometrial cancer

Bacterial Iron Detoxification Mechanisms: Insights into Iron Homeostasis and Oxidative Stress Mitigation Original paper

Researched by:

  • Karen Pendergrass ID
    Karen Pendergrass

    User avatarKaren Pendergrass is a microbiome researcher specializing in microbiome-targeted interventions (MBTIs). She systematically analyzes scientific literature to identify microbial patterns, develop hypotheses, and validate interventions. As the founder of the Microbiome Signatures Database, she bridges microbiome research with clinical practice. In 2012, based on her own investigative research, she became the first documented case of FMT for Celiac Disease—four years before the first published case study.

    Read More

Fact-checked by:

  • Karen Pendergrass ID
    Karen Pendergrass

    User avatarKaren Pendergrass is a microbiome researcher specializing in microbiome-targeted interventions (MBTIs). She systematically analyzes scientific literature to identify microbial patterns, develop hypotheses, and validate interventions. As the founder of the Microbiome Signatures Database, she bridges microbiome research with clinical practice. In 2012, based on her own investigative research, she became the first documented case of FMT for Celiac Disease—four years before the first published case study.

    Read More

March 18, 2025

  • Metals
    Metals

    Heavy metals play a significant and multifaceted role in the pathogenicity of microbial species.

Researched by:

  • Karen Pendergrass ID
    Karen Pendergrass

    User avatarKaren Pendergrass is a microbiome researcher specializing in microbiome-targeted interventions (MBTIs). She systematically analyzes scientific literature to identify microbial patterns, develop hypotheses, and validate interventions. As the founder of the Microbiome Signatures Database, she bridges microbiome research with clinical practice. In 2012, based on her own investigative research, she became the first documented case of FMT for Celiac Disease—four years before the first published case study.

    Read More

Fact-checked by:

  • Karen Pendergrass ID
    Karen Pendergrass

    User avatarKaren Pendergrass is a microbiome researcher specializing in microbiome-targeted interventions (MBTIs). She systematically analyzes scientific literature to identify microbial patterns, develop hypotheses, and validate interventions. As the founder of the Microbiome Signatures Database, she bridges microbiome research with clinical practice. In 2012, based on her own investigative research, she became the first documented case of FMT for Celiac Disease—four years before the first published case study.

    Read More

Last Updated: 2024-12-04

Microbiome Signatures identifies and validates condition-specific microbiome shifts and interventions to accelerate clinical translation. Our multidisciplinary team supports clinicians, researchers, and innovators in turning microbiome science into actionable medicine.

Karen Pendergrass

Karen Pendergrass is a microbiome researcher specializing in microbiome-targeted interventions (MBTIs). She systematically analyzes scientific literature to identify microbial patterns, develop hypotheses, and validate interventions. As the founder of the Microbiome Signatures Database, she bridges microbiome research with clinical practice. In 2012, based on her own investigative research, she became the first documented case of FMT for Celiac Disease—four years before the first published case study.

What was reviewed?

This review examines the mechanisms bacteria employ to manage iron homeostasis, detoxify excess iron, and mitigate oxidative stress caused by reactive oxygen and nitrogen species. The review surveys molecular insights into various iron-regulating proteins and pathways, highlighting their structures, functions, and evolutionary significance. These mechanisms are critical for bacterial survival, especially under oxidative stress and during host-pathogen interactions.

Who was reviewed?

The review focuses on bacteria from diverse ecological niches, including both Gram-positive and Gram-negative species. It examines key bacterial proteins and regulatory systems such as Fur (ferric uptake regulator), DtxR/IdeR (iron-dependent regulators), and novel regulators like RirA and Irr. The study also investigates iron storage proteins like ferritins and mini-ferritins (Dps), alongside mechanisms for iron acquisition, transport, and detoxification.

What were the most important findings?

The review highlights iron’s dual role as an essential nutrient and potential toxin due to ROS generation via the Fenton reaction. Proteins like Fur, DtxR, and RirA regulate iron homeostasis by balancing uptake, storage, and efflux to prevent oxidative stress. Ferritins and Dps detoxify excess iron by sequestering it, while siderophores facilitate iron acquisition. The interplay between iron homeostasis and ROS/RNS detoxification is critical during immune responses, with bacteria exhibiting diverse adaptations to manage iron under varying environmental stresses.

What are the greatest implications of this review?

The insights provided by this review have significant implications for understanding bacterial survival strategies under nutrient limitation and oxidative stress. These findings offer potential therapeutic targets for managing bacterial infections. Iron acquisition and storage systems are particularly attractive targets, as their disruption could limit bacterial growth and virulence. Additionally, understanding bacterial iron detoxification pathways can inform microbiome-targeted interventions (MBTIs) such as iron chelation, especially in conditions where dysbiosis may alter iron homeostasis or oxidative stress.

Microbiome-Targeted Interventions (MBTIs)

Microbiome Targeted Interventions (MBTIs) are cutting-edge treatments that utilize information from Microbiome Signatures to modulate the microbiome, revolutionizing medicine with unparalleled precision and impact.

  • Associated Categories
Join the Roundtable

Contribute to published consensus reports, connect with top clinicians and researchers, and receive exclusive invitations to roundtable conferences.