Research Feeds

View All
Characterizing the gut microbiota in females with infertility and preliminary results of a water-soluble dietary fiber intervention study A prebiotic dietary pilot intervention restores faecal metabolites and may be neuroprotective in Parkinson’s Disease Diagnosis of the menopause: NICE guidance and quality standards Causes of Death in End-Stage Kidney Disease: Comparison Between the United States Renal Data System and a Large Integrated Health Care System Factors affecting the absorption and excretion of lead in the rat Factors associated with age at menarche, menstrual knowledge, and hygiene practices among schoolgirls in Sharjah, UAE Cadmium transport in blood serum The non-pathogenic Escherichia coli strain Nissle 1917 – features of a versatile probiotic Structured Exercise Benefits in Euthyroid Graves’ Disease: Improved Capacity, Fatigue, and Relapse Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson’s Disease A Pilot Microbiota Study in Parkinson’s Disease Patients versus Control Subjects, and Effects of FTY720 and FTY720-Mitoxy Therapies in Parkinsonian and Multiple System Atrophy Mouse Models Dysbiosis of the Saliva Microbiome in Patients With Polycystic Ovary Syndrome Integrated Microbiome and Host Transcriptome Profiles Link Parkinson’s Disease to Blautia Genus: Evidence From Feces, Blood, and Brain Gut microbiota modulation: a narrative review on a novel strategy for prevention and alleviation of ovarian aging Long-term postmenopausal hormone therapy and endometrial cancer

Alterations in composition and diversity of the intestinal microbiota in patients with diarrhea-predominant irritable bowel syndrome Original paper

May 18, 2025

  • Irritable Bowel Syndrome (IBS)
    Irritable Bowel Syndrome (IBS)

    Irritable Bowel Syndrome (IBS) is a common gastrointestinal disorder characterized by symptoms such as abdominal pain, bloating, and altered bowel habits. Recent research has focused on the gut microbiota's role in IBS, aiming to identify specific microbial signatures associated with the condition.

Last Updated: 2012-01-01

Microbiome Signatures identifies and validates condition-specific microbiome shifts and interventions to accelerate clinical translation. Our multidisciplinary team supports clinicians, researchers, and innovators in turning microbiome science into actionable medicine.

Karen Pendergrass

Karen Pendergrass is a microbiome researcher specializing in microbiome-targeted interventions (MBTIs). She systematically analyzes scientific literature to identify microbial patterns, develop hypotheses, and validate interventions. As the founder of the Microbiome Signatures Database, she bridges microbiome research with clinical practice. In 2012, based on her own investigative research, she became the first documented case of FMT for Celiac Disease—four years before the first published case study.

Location
United States of America
Sample Site
Feces
Species
Homo sapiens

What was studied?

The study examined the composition and diversity of the gut microbiota in patients with diarrhea-predominant irritable bowel syndrome (D-IBS) compared to healthy controls. Using 16S rRNA gene sequencing, the researchers evaluated microbial populations, community structure, and specific taxonomic shifts associated with D-IBS, aiming to understand the microbial dysbiosis that may underlie the pathophysiology of this condition.

Who was studied?

The study included 23 patients diagnosed with diarrhea-predominant irritable bowel syndrome (D-IBS) and 23 healthy controls (HC). All participants were recruited from the University of North Carolina at Chapel Hill and were screened to exclude other gastrointestinal conditions.

What were the most important findings?

The analysis revealed significant dysbiosis in the gut microbiota of D-IBS patients compared to healthy controls. Key findings included a substantial increase in the family Enterobacteriaceae, particularly unclassified genera, which are known to encompass pathogenic species. Conversely, the beneficial genus Faecalibacterium, particularly F. prausnitzii, was significantly reduced in D-IBS patients. Faecalibacterium is recognized for its anti-inflammatory properties and is generally considered protective for gut health. This reduction may indicate an underlying pro-inflammatory state within the gut microbiota of D-IBS patients. Additionally, D-IBS patients exhibited lower microbial diversity (α-diversity) and greater variability in microbial community composition (β-diversity), suggesting an imbalance in microbial homeostasis. The study also identified specific increases in Enterococcus, Fusobacterium, and unclassified members of Lactobacillaceae and Veillonella, which were largely undetectable in healthy individuals. These shifts point towards a microbial environment that may exacerbate gut inflammation and motility disturbances characteristic of D-IBS.

ParameterFindings in D-IBS Patients
Microbial DiversityReduced α-diversity, indicating lower microbial richness
Microbial Community StructureIncreased β-diversity, suggesting greater community variability
Increased GeneraEnterobacteriaceae, Enterococcus, Fusobacterium, Veillonella
Decreased GeneraFaecalibacterium, specifically F. prausnitzii
Pathogenic AssociationsElevated Enterobacteriaceae includes potentially pathogenic species
Inflammatory IndicatorsLoss of F. prausnitzii, a known anti-inflammatory bacterium
Microbial DysbiosisImbalanced harmful and beneficial bacteria, indicating gut inflammation

What are the greatest implications of this study?

The findings underscore the significant role of gut microbiota in the pathophysiology of D-IBS, marked by a distinct microbial signature that includes elevated Enterobacteriaceae and diminished Faecalibacterium populations. These microbial alterations reflect potential mechanisms driving gut inflammation and motility disorders. Importantly, the study suggests that microbial dysbiosis could serve as both a biomarker for diagnosing D-IBS and a potential target for therapeutic interventions aimed at restoring microbial balance. Future strategies may include microbiome-targeted therapies such as probiotics or prebiotics aimed at re-establishing beneficial bacterial populations and mitigating pro-inflammatory species.

Irritable Bowel Syndrome (IBS)

Irritable Bowel Syndrome (IBS) is a common gastrointestinal disorder characterized by symptoms such as abdominal pain, bloating, and altered bowel habits. Recent research has focused on the gut microbiota's role in IBS, aiming to identify specific microbial signatures associated with the condition.

Join the Roundtable

Contribute to published consensus reports, connect with top clinicians and researchers, and receive exclusive invitations to roundtable conferences.