2025-12-23 09:57:49
Prebiotics majorpublished
Did you know?
Prebiotics are not just limited to fiber. Polyphenols, found in foods like cocoa, green tea, and red wine, have been shown to act as prebiotics by feeding beneficial microbes and increasing SCFA production. These compounds can also contribute to antioxidant protection and reduce the risk of cardiovascular diseases.
Prebiotics are non-digestible fibers that selectively promote the growth of beneficial gut bacteria, offering a range of health benefits from improved digestion and immune function to enhanced metabolic health. Prebiotics are an essential part of a healthy diet that supports both gut and overall well-being.
I am a biochemist with a deep curiosity for the human microbiome and how it shapes human health, and I enjoy making microbiome science more accessible through research and writing. With 2 years experience in microbiome research, I have curated microbiome studies, analyzed microbial signatures, and now focus on interventions as a Microbiome Signatures and Interventions Research Coordinator.
Microbiome Signatures identifies and validates condition-specific microbiome shifts and interventions to accelerate clinical translation. Our multidisciplinary team supports clinicians, researchers, and innovators in turning microbiome science into actionable medicine.
I am a biochemist with a deep curiosity for the human microbiome and how it shapes human health, and I enjoy making microbiome science more accessible through research and writing. With 2 years experience in microbiome research, I have curated microbiome studies, analyzed microbial signatures, and now focus on interventions as a Microbiome Signatures and Interventions Research Coordinator.
Over time, the definition of prebiotics has evolved as scientific understanding grew. A 2007 refinement by Roberfroid described prebiotics as “a selectively fermented ingredient that allows specific changes in the composition and/or activity of the gastrointestinal microflora, thus conferring benefits upon host health.”[1] Most recently, an expert consensus panel updated the definition in 2017 to a simpler, inclusive form: “a substrate that is selectively utilized by host microorganisms, conferring a health benefit.” This updated definition allows that prebiotics need not be carbohydrates meaning non-carbohydrate compounds like polyphenols or fatty acids might qualify if they meet the criteria, and that prebiotics can act in body sites beyond the gut.[2] Two key conditions remain: a prebiotic must be resistant to digestion by the host (so it reaches the colon or target site intact) and must have documented beneficial health effects mediated by the microbiota in the host.[3] Unlike probiotics which are live beneficial microbes administered to the host, prebiotics are non-viable nutritional substrates that feed and enhance the beneficial microbes already present (or delivered probiotics).[4]
Prebiotics play a significant biological role by nurturing the gut microbiome in ways that can translate into improved health. By selectively boosting beneficial gut bacteria, prebiotics can positively influence a range of physiological functions. Research has identified several key health benefits and the importance of prebiotics.[5]
| Health Benefits | Supporting Evidence |
|---|---|
| Gut Health and Digestion | Prebiotic fibers increase populations of beneficial bacteria such as Bifidobacterium and Lactobacillus in the colon, which in turn enhance digestion and gut function.[6] Fermentation of prebiotics by these microbes produces short-chain fatty acids (SCFAs) like butyrate, acetate, and propionate, which help nourish the colon lining, lower intestinal pH, and inhibit pathogen growth.[7][8] The result is often improved bowel regularity and a healthier intestinal environment. |
| Immune System Modulation | By improving gut barrier integrity and altering microbial composition, prebiotics can strengthen immune defenses.[9] For example, increasing beneficial gut microbes through prebiotics has been shown to reduce markers of inflammation and enhance the body’s infection resistance.[10] Some prebiotics stimulate the release of anti-inflammatory compounds and reduce pro-inflammatory signaling, thereby potentially lowering the risk of immune-mediated diseases or infections.[11] |
| Metabolic Health | Prebiotic intake has been linked to beneficial metabolic effects.[12] Studies indicate that prebiotics may help in weight management and blood sugar regulation.[13] Prebiotics can also improve insulin sensitivity and glycemic control by promoting SCFA production and reducing systemic inflammation.[14] In addition, they may help lower LDL cholesterol levels, contributing to better cardiovascular health.[15] |
Mental Health and the Gut-Brain Axis | Emerging evidence suggests prebiotics can influence brain function and mood via the gut-brain axis.[16] The gut microbiota communicates with the central nervous system, and prebiotic-induced changes in the microbiome can affect this signaling.[17] In one trial, a single 5 g dose of a prebiotic led to improved mood and cognitive performance in healthy adults.[18] Diets high in prebiotic-rich plant foods have also been associated with reduced anxiety and better sleep in some studies.[19][20] These mental health benefits are thought to arise from microbially produced metabolites (like certain SCFAs or neurotransmitter precursors) and from the reduction of systemic inflammation (since inflammation is linked to depression and anxiety).[21][22] |
| Mineral Absorption and Bone Health | Certain prebiotics enhance the absorption of minerals such as calcium and magnesium in the gut, thereby supporting bone density. For example, fructooligosaccharides (FOS) and inulin have been shown to improve calcium uptake, which can lead to increased bone mineral density and strength.[23][24] In animal studies, diets supplemented with FOS resulted in stronger bones and higher markers of bone formation, highlighting the potential role of prebiotics in osteoporosis prevention.[25] |
The primary mechanism is through the fermentation of these non-digestible substrates by gut microorganisms. Human digestive enzymes cannot break down prebiotic fibers, so they reach the colon largely intact. There, gut bacteria, especially certain beneficial groups, metabolize (ferment) the prebiotics as an energy source.[26] This fermentation process produces various short-chain fatty acids (SCFAs), gases, and other metabolites. The SCFAs (notably acetate, propionate, and butyrate) are key mediators of prebiotics’ effects.[27] The mechanism of prebiotics centers on nourishing targeted beneficial microbes, which then produce metabolites and interactions that improve host health.
Prebiotics are selectively utilized by beneficial microbes. For example, FOS and inulin predominantly feed Bifidobacterium and Lactobacillus species, leading to a bloom in these health-promoting bacteria.[28] As beneficial populations increase, they can outcompete or inhibit undesirable bacteria. Early studies noted that prebiotic fructans increased Bifidobacteria counts while not promoting pathogens like certain Clostridia or E. coli.[29] By favoring a limited spectrum of microbes (rather than the entire microbiota), prebiotics shift the community towards a composition associated with health.[30]
When gut microbes ferment prebiotics, they produce SCFAs such as butyrate, acetate, and propionate. These compounds have numerous beneficial effects.[31] Butyrate, for instance, is the preferred fuel for colonocyte cells lining the colon; it helps strengthen the gut barrier, reduces inflammation, and can induce cancer cell apoptosis in the colon.[32] Propionate and acetate travel in the bloodstream to other organs, where they can improve metabolic processes like glucose and cholesterol metabolism and modulate appetite and immune function.[33] The production of SCFAs also lowers the colonic pH (making it more acidic), which creates an environment less hospitable to pathogens but favorable to acid-tolerant beneficial bacteria. For example, fermentation of prebiotics tends to drop gut pH from neutral (~6.5) toward more acidic (~5.5); at pH 5.5, butyrate-producing microbes like Roseburia flourish, enhancing butyrate levels.[34]
Prebiotics, via SCFAs, contribute to strengthening the intestinal barrier.[35] A healthier gut barrier means fewer unwanted substances (like endotoxins from Gram-negative bacteria) “leak” into circulation. In animal models, prebiotic supplementation reversed increases in gut permeability and endotoxin levels caused by a high-fat diet.[36] By reducing “leaky gut” and systemic endotoxemia, prebiotics indirectly lower inflammation and metabolic stress on the host.
There are both direct and indirect mechanisms by which prebiotics affect the immune system.[37] Indirectly, the rise in beneficial microbes and SCFAs leads to an immune environment that is more regulated and less prone to excessive inflammation. SCFAs like propionate can enter circulation and have been shown to downregulate pro-inflammatory cytokines (like IL-1β, IFN-γ) in the body.[38] At the same time, prebiotic-fed microbiota produce metabolites that promote the production of anti-inflammatory immune cells. Directly, some prebiotic oligosaccharides can interact with gut epithelial cells and immune cells, acting as signaling molecules. Studies have found that specific oligosaccharides bind to receptors on intestinal cells, dampening inflammatory pathways (such as NF-κB) and making the host tissue less responsive to pathogenic triggers.[39] Thus, prebiotics can prime the immune system toward a balanced state – vigilant against pathogens but not overactive.
As a consequence of fostering beneficial flora and altering environmental conditions (pH, available nutrients), prebiotics indirectly help crowd out harmful microbes.[40] For example, an increase in Bifidobacterium and the acids they produce can inhibit the growth of Salmonella or other pathogenic bacteria in the gut.[41] Beneficial bacteria stimulated by prebiotics may also produce bacteriocins or other antimicrobial substances that suppress competitors.[42] In this way, prebiotics contribute to a microbial community that resists colonization by disease-causing organisms.
Prebiotics have a profound influence on the composition and activity of the gut microbiome. Upon regular consumption of prebiotics, notable shifts in the microbiota can be observed.
| Effect | Description | Example of Prebiotics |
|---|---|---|
| Selective Microbial Growth | Prebiotics selectively promote the growth of beneficial microbes (e.g., Bifidobacterium, Lactobacillus).[43] | Inulin, Fructooligosaccharides (FOS) |
| SCFA Production | Prebiotics are fermented by gut microbes, producing short-chain fatty acids (SCFAs) like butyrate, acetate, and propionate, which improve gut health.[44] | Inulin, Resistant Starch |
| Gut Barrier Enhancement | SCFAs from prebiotic fermentation help maintain gut barrier integrity, reducing inflammation and preventing “leaky gut.”[45] | Resistant Starch, Arabinoxylan |
| Reduction of Pathogens | Beneficial microbes stimulated by prebiotics inhibit harmful pathogens by outcompeting them and producing antimicrobial substances.[46][47] | GOS, Inulin, FOS |
| Microbial Diversity | Prebiotics can increase microbial diversity, which is associated with a healthier and more resilient microbiome.[48] | Fructans (Inulin), Beta-glucans |
| Metabolic and Immune Modulation | Prebiotics may improve metabolic health (e.g., glucose control) and modulate immune responses.[49] | GOS, Resistant Starch, Inulin |
Prebiotics are naturally present in a variety of plant-based foods, and they are also available as isolated ingredients or supplements. They typically come in the form of specific types of fermentable fibers or carbohydrates. Below is a table of familiar sources of prebiotics.
| Prebiotic Type | Food Sources |
|---|---|
| Fructans (Inulin and FOS) | Beans, lentils, peas, milk (especially human milk), and some dairy products. |
| Galactooligosaccharides (GOS) | Berries, cocoa, tea, coffee, apples, and red wine. |
| Resistant Starch | Underripe bananas, cooked-and-cooled potatoes, rice, oats, legumes, barley. |
| Beta-Glucans | Oats, barley, mushrooms, yeast. |
| Pectins | Apples, citrus fruits, carrots, berries. |
| Arabinoxylan (AXOS) | Wheat, rye, and whole grains. |
| Polyphenols | Berries, cocoa, tea, coffee, apples, red wine. |
Prebiotics have garnered considerable interest in the scientific and medical communities as a tool for influencing the microbiome to improve health. Their role in microbiome-related studies and interventions can be summarized in a few key areas:
Researchers are actively investigating prebiotics as a therapy or adjunct therapy for various conditions linked to microbiome imbalances (dysbiosis). For example, in metabolic diseases like obesity and diabetes, studies have shown that prebiotic supplementation can modulate gut microbes and improve outcomes.[50] One clinical trial in children with overweight/obesity found that 16 weeks of oligofructose-enriched inulin led to significant improvements in body weight and body fat percentage, accompanied by a rise in beneficial Bifidobacterium and a reduction in an inflammation-linked bacterium (Bacteroides vulgatus).[51]
The concept of “psychobiotics” has emerged to describe probiotics or prebiotics that confer mental health benefits via the gut-brain axis.[52] Prebiotic studies in this area are still relatively new, but early findings are intriguing. As mentioned, a small study found improved cognitive function with inulin supplementation.[53] Other research suggests diets high in fermentable fibers correlate with lower levels of anxiety and stress in otherwise healthy adults.[54] These effects are hypothesized to result from a combination of SCFA-mediated immune modulation (reducing systemic inflammation that can affect the brain) and direct microbial production of neuroactive compounds (some gut bacteria produce GABA, serotonin precursors, or influence tryptophan metabolism).[55]
Often, researchers test synbiotics, which are combinations of probiotics and prebiotics given together. The rationale is that the prebiotic will help the administered probiotic strains survive and colonize, yielding a synergistic health effect.[56] For instance, a synbiotic might pair a Bifidobacterium strain with a prebiotic fiber that feeds bifidobacteria (like GOS or inulin) explicitly. Synbiotic formulations have been examined in conditions such as irritable bowel syndrome, liver disease, and atopic dermatitis. Some trials report that synbiotics improved outcomes more than either probiotics or prebiotics alone.[57]
Prebiotics represent a promising and active area of microbiome research and innovation. They are a cornerstone of many microbiome-targeted interventions because of their ability to modulate the community from within. Ongoing and future studies, including large-scale human trials, will further clarify which prebiotics are most effective for which purposes, optimal dosages, and how individual microbiomes can be guided for maximal benefit. The consistent theme emerging from the research is that nurturing our gut microbes with the right prebiotics can have far-reaching benefits for our health, reinforcing the adage that “food is medicine,” down to the level of our microbial inhabitants.
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Did you know?
Gut microbiota-derived metabolite trimethylamine N-oxide (TMAO) is strongly linked to cardiovascular disease, potentially influencing atherosclerosis more than cholesterol, making the gut microbiome a key therapeutic target.
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Did you know?
Gut microbiota-derived metabolite trimethylamine N-oxide (TMAO) is strongly linked to cardiovascular disease, potentially influencing atherosclerosis more than cholesterol, making the gut microbiome a key therapeutic target.
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
2025-12-23 09:57:49
Prebiotics majorpublished
Short-chain fatty acids are microbially derived metabolites that regulate epithelial integrity, immune signaling, and microbial ecology. Their production patterns and mechanistic roles provide essential functional markers within microbiome signatures and support the interpretation of MBTIs, MMAs, and systems-level microbial shifts across clinical conditions.
Recent research has revealed that specific gut microbiota-derived metabolites are strongly linked to cardiovascular disease risk—potentially influencing atherosclerosis development more than traditional risk factors like cholesterol levels. This highlights the gut microbiome as a novel therapeutic target for cardiovascular interventions.
TMAO is a metabolite formed when gut bacteria convert dietary nutrients like choline and L-carnitine into trimethylamine (TMA), which is then oxidized in the liver to TMAO. This compound is linked to cardiovascular disease, as it promotes atherosclerosis, thrombosis, and inflammation, highlighting the crucial role of gut microbiota in influencing heart health.
Recent research has revealed that specific gut microbiota-derived metabolites are strongly linked to cardiovascular disease risk—potentially influencing atherosclerosis development more than traditional risk factors like cholesterol levels. This highlights the gut microbiome as a novel therapeutic target for cardiovascular interventions.
TMAO is a metabolite formed when gut bacteria convert dietary nutrients like choline and L-carnitine into trimethylamine (TMA), which is then oxidized in the liver to TMAO. This compound is linked to cardiovascular disease, as it promotes atherosclerosis, thrombosis, and inflammation, highlighting the crucial role of gut microbiota in influencing heart health.
Heavy metals play a significant and multifaceted role in the pathogenicity of microbial species.
Roberfroid, M. (2007).
Prebiotics: The Concept Revisited1,.The Journal of Nutrition, 137(3), 830S-837S.
Read ReviewGibson, G. R., Hutkins, R., Sanders, M. E., Prescott, S. L., Reimer, R. A., Salminen, S. J., Scott, K., Stanton, C., Swanson, K. S., Cani, P. D., Verbeke, K., & Reid, G. (2017).
Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics.Nature Reviews Gastroenterology & Hepatology, 14(8), 491-502.
Read ReviewAbernathy, B., Schoenfuss, T., Bailey, A., & Gallaher, D. (2020).
Prebiotics Must Achieve a Threshold of Increase in Gut Probiotic Bacteria to Impart Beneficial Health Effects on the Host.Current Developments in Nutrition, 4(Suppl 2), 1544.
Ji, J., Jin, W., Liu, J., Jiao, Z., & Li, X. (2023).
Probiotics, prebiotics, and postbiotics in health and disease.MedComm, 4(6), e420.
Read ReviewJi, J., Jin, W., Liu, J., Jiao, Z., & Li, X. (2023).
Probiotics, prebiotics, and postbiotics in health and disease.MedComm, 4(6), e420.
Read ReviewCarlson, J. L., Erickson, J. M., Lloyd, B. B., & Slavin, J. L. (2018).
Health Effects and Sources of Prebiotic Dietary Fiber.Current Developments in Nutrition, 2(3), nzy005.
Read ReviewYoo, S., Jung, C., Kwak, K., Kim, S., Yoo, S., Jung, C., Kwak, K., & Kim, S. (2024).
The Role of Prebiotics in Modulating Gut Microbiota: Implications for Human Health.International Journal of Molecular Sciences, 25(9).
Read ReviewCarlson, J. L., Erickson, J. M., Lloyd, B. B., & Slavin, J. L. (2018).
Health Effects and Sources of Prebiotic Dietary Fiber.Current Developments in Nutrition, 2(3), nzy005.
Read ReviewCarlson, J. L., Erickson, J. M., Lloyd, B. B., & Slavin, J. L. (2018).
Health Effects and Sources of Prebiotic Dietary Fiber.Current Developments in Nutrition, 2(3), nzy005.
Read ReviewYoo, S., Jung, C., Kwak, K., Kim, S., Yoo, S., Jung, C., Kwak, K., & Kim, S. (2024).
The Role of Prebiotics in Modulating Gut Microbiota: Implications for Human Health.International Journal of Molecular Sciences, 25(9).
Read ReviewAli, S., Hamayun, M., Siraj, M., Khan, S. A., Kim, H., & Lee, B. (2025).
Recent advances in prebiotics: Classification, mechanisms, and health applications.Future Foods, 12, 100680.
Read ReviewAli, S., Hamayun, M., Siraj, M., Khan, S. A., Kim, H., & Lee, B. (2025).
Recent advances in prebiotics: Classification, mechanisms, and health applications.Future Foods, 12, 100680.
Read ReviewOthman, R. B., Amor, N. B., Mahjoub, F., Berriche, O., Ghali, C. E., Gamoudi, A., & Jamoussi, H. (2023).
A clinical trial about effects of prebiotic and probiotic supplementation on weight loss, psychological profile and metabolic parameters in obese subjects.Endocrinology, Diabetes & Metabolism, 6(2), e402.
Read ReviewVictoria Obayomi, O., Folakemi Olaniran, A., & Olugbemiga Owa, S. (2024).
Unveiling the role of functional foods with emphasis on prebiotics and probiotics in human health: A review.Journal of Functional Foods, 119, 106337.
Read ReviewNousheen, S., Amir, I., Ismat, N., Fatima, H., Bukhat, H., Bibi, I., & Yasin, M. (2025).
Role of Probiotics in Modulating and Managing Metabolic Diseases.IntechOpen.
Read ReviewAnsari, F., Neshat, M., Pourjafar, H., Jafari, S. M., Samakkhah, S. A., & Mirzakhani, E. (2023).
The role of probiotics and prebiotics in modulating of the gut-brain axis.Frontiers in Nutrition, 10, 1173660.
Read ReviewAnsari, F., Neshat, M., Pourjafar, H., Jafari, S. M., Samakkhah, S. A., & Mirzakhani, E. (2023).
The role of probiotics and prebiotics in modulating of the gut-brain axis.Frontiers in Nutrition, 10, 1173660.
Read ReviewFreijy, T. M., Cribb, L., Oliver, G., Metri, N., Opie, R. S., Jacka, F. N., Hawrelak, J. A., Rucklidge, J. J., Ng, C. H., & Sarris, J. (2023).
Effects of a high-prebiotic diet versus probiotic supplements versus synbiotics on adult mental health: The “Gut Feelings” randomised controlled trial.Frontiers in Neuroscience, 16, 1097278.
Read ReviewFreijy, T. M., Cribb, L., Oliver, G., Metri, N., Opie, R. S., Jacka, F. N., Hawrelak, J. A., Rucklidge, J. J., Ng, C. H., & Sarris, J. (2023).
Effects of a high-prebiotic diet versus probiotic supplements versus synbiotics on adult mental health: The “Gut Feelings” randomised controlled trial.Frontiers in Neuroscience, 16, 1097278.
Read ReviewYang, Y., Zhou, B., Zhang, S., Si, L., Liu, X., & Li, F. (2023).
Prebiotics for depression: How does the gut microbiota play a role?Frontiers in Nutrition, 10, 1206468.
Read ReviewAnsari, F., Neshat, M., Pourjafar, H., Jafari, S. M., Samakkhah, S. A., & Mirzakhani, E. (2023).
The role of probiotics and prebiotics in modulating of the gut-brain axis.Frontiers in Nutrition, 10, 1173660.
Read ReviewYang, Y., Zhou, B., Zhang, S., Si, L., Liu, X., & Li, F. (2023).
Prebiotics for depression: How does the gut microbiota play a role?Frontiers in Nutrition, 10, 1206468.
Read ReviewGibson, G. R., Hutkins, R., Sanders, M. E., Prescott, S. L., Reimer, R. A., Salminen, S. J., Scott, K., Stanton, C., Swanson, K. S., Cani, P. D., Verbeke, K., & Reid, G. (2017).
Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics.Nature Reviews Gastroenterology & Hepatology, 14(8), 491-502.
Read ReviewYoo, S., Jung, C., Kwak, K., Kim, S., Yoo, S., Jung, C., Kwak, K., & Kim, S. (2024).
The Role of Prebiotics in Modulating Gut Microbiota: Implications for Human Health.International Journal of Molecular Sciences, 25(9).
Read ReviewMcCabe, L., Britton, R. A., & Parameswaran, N. (2015).
Prebiotic and Probiotic Regulation of Bone Health: Role of the Intestine and its Microbiome.Current Osteoporosis Reports, 13(6), 363.
Read ReviewYoo, S., Jung, C., Kwak, K., Kim, S., Yoo, S., Jung, C., Kwak, K., & Kim, S. (2024).
The Role of Prebiotics in Modulating Gut Microbiota: Implications for Human Health.International Journal of Molecular Sciences, 25(9).
Read ReviewYoo, S., Jung, C., Kwak, K., Kim, S., Yoo, S., Jung, C., Kwak, K., & Kim, S. (2024).
The Role of Prebiotics in Modulating Gut Microbiota: Implications for Human Health.International Journal of Molecular Sciences, 25(9).
Read ReviewGibson, G. R., Hutkins, R., Sanders, M. E., Prescott, S. L., Reimer, R. A., Salminen, S. J., Scott, K., Stanton, C., Swanson, K. S., Cani, P. D., Verbeke, K., & Reid, G. (2017).
Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics.Nature Reviews Gastroenterology & Hepatology, 14(8), 491-502.
Read ReviewKezer, G., Paramithiotis, S., Khwaldia, K., Harahap, I. A., Čagalj, M., Šimat, V., Smaoui, S., Elfalleh, W., Ozogul, F., & Esatbeyoglu, T. (2025).
A comprehensive overview of the effects of probiotics, prebiotics and synbiotics on the gut-brain axis.Frontiers in Microbiology, 16, 1651965.
Read ReviewKezer, G., Paramithiotis, S., Khwaldia, K., Harahap, I. A., Čagalj, M., Šimat, V., Smaoui, S., Elfalleh, W., Ozogul, F., & Esatbeyoglu, T. (2025).
A comprehensive overview of the effects of probiotics, prebiotics and synbiotics on the gut-brain axis.Frontiers in Microbiology, 16, 1651965.
Read ReviewWang, Y., Tian, L., Fabi, J. P., & De Vos, P. (2025).
The potential of prebiotics, probiotics, and synbiotics for ameliorating intestinal barrier dysfunction and modulating inflammatory responses as dietary supplements in diabetes mellitus management.Food Bioscience, 72, 107539.
Read ReviewSengupta, S., Muir, J. G., & Gibson, P. R. (2006).
Does butyrate protect from colorectal cancer?Journal of Gastroenterology and Hepatology, 21(1), 209-218.
Read ReviewFacchin, S., Bertin, L., Bonazzi, E., Lorenzon, G., Barba, C. D., Barberio, B., Zingone, F., Maniero, D., Scarpa, M., Ruffolo, C., Angriman, I., & Savarino, E. V. (2024).
Short-Chain Fatty Acids and Human Health: From Metabolic Pathways to Current Therapeutic Implications.Life, 14(5), 559.
Read ReviewYoo, S., Jung, C., Kwak, K., Kim, S., Yoo, S., Jung, C., Kwak, K., & Kim, S. (2024).
The Role of Prebiotics in Modulating Gut Microbiota: Implications for Human Health.International Journal of Molecular Sciences, 25(9).
Read ReviewFacchin, S., Bertin, L., Bonazzi, E., Lorenzon, G., Barba, C. D., Barberio, B., Zingone, F., Maniero, D., Scarpa, M., Ruffolo, C., Angriman, I., & Savarino, E. V. (2024).
Short-Chain Fatty Acids and Human Health: From Metabolic Pathways to Current Therapeutic Implications.Life, 14(5), 559.
Read ReviewYoo, S., Jung, C., Kwak, K., Kim, S., Yoo, S., Jung, C., Kwak, K., & Kim, S. (2024).
The Role of Prebiotics in Modulating Gut Microbiota: Implications for Human Health.International Journal of Molecular Sciences, 25(9).
Read ReviewCarlson, J. L., Erickson, J. M., Lloyd, B. B., & Slavin, J. L. (2018).
Health Effects and Sources of Prebiotic Dietary Fiber.Current Developments in Nutrition, 2(3), nzy005.
Read ReviewYoo, S., Jung, C., Kwak, K., Kim, S., Yoo, S., Jung, C., Kwak, K., & Kim, S. (2024).
The Role of Prebiotics in Modulating Gut Microbiota: Implications for Human Health.International Journal of Molecular Sciences, 25(9).
Read ReviewWu, R. Y., Määttänen, P., Napper, S., Scruten, E., Li, B., Koike, Y., Johnson-Henry, K. C., Pierro, A., Rossi, L., Botts, S. R., Surette, M. G., & Sherman, P. M. (2017).
Non-digestible oligosaccharides directly regulate host kinome to modulate host inflammatory responses without alterations in the gut microbiota.Microbiome, 5, 135.
Read ReviewKezer, G., Paramithiotis, S., Khwaldia, K., Harahap, I. A., Čagalj, M., Šimat, V., Smaoui, S., Elfalleh, W., Ozogul, F., & Esatbeyoglu, T. (2025).
A comprehensive overview of the effects of probiotics, prebiotics and synbiotics on the gut-brain axis.Frontiers in Microbiology, 16, 1651965.
Read ReviewJi, J., Jin, W., Liu, J., Jiao, Z., & Li, X. (2023).
Probiotics, prebiotics, and postbiotics in health and disease.MedComm, 4(6), e420.
Read ReviewJi, J., Jin, W., Liu, J., Jiao, Z., & Li, X. (2023).
Probiotics, prebiotics, and postbiotics in health and disease.MedComm, 4(6), e420.
Read ReviewGibson, G. R., Hutkins, R., Sanders, M. E., Prescott, S. L., Reimer, R. A., Salminen, S. J., Scott, K., Stanton, C., Swanson, K. S., Cani, P. D., Verbeke, K., & Reid, G. (2017).
Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics.Nature Reviews Gastroenterology & Hepatology, 14(8), 491-502.
Read ReviewWang, Y., Tian, L., Fabi, J. P., & De Vos, P. (2025).
The potential of prebiotics, probiotics, and synbiotics for ameliorating intestinal barrier dysfunction and modulating inflammatory responses as dietary supplements in diabetes mellitus management.Food Bioscience, 72, 107539.
Read ReviewYoo, S., Jung, C., Kwak, K., Kim, S., Yoo, S., Jung, C., Kwak, K., & Kim, S. (2024).
The Role of Prebiotics in Modulating Gut Microbiota: Implications for Human Health.International Journal of Molecular Sciences, 25(9).
Read ReviewKezer, G., Paramithiotis, S., Khwaldia, K., Harahap, I. A., Čagalj, M., Šimat, V., Smaoui, S., Elfalleh, W., Ozogul, F., & Esatbeyoglu, T. (2025).
A comprehensive overview of the effects of probiotics, prebiotics and synbiotics on the gut-brain axis.Frontiers in Microbiology, 16, 1651965.
Read ReviewJi, J., Jin, W., Liu, J., Jiao, Z., & Li, X. (2023).
Probiotics, prebiotics, and postbiotics in health and disease.MedComm, 4(6), e420.
Read ReviewDeehan, E. C., Al Antwan, S., Witwer, R. S., Guerra, P., John, T., & Monheit, L. (2024).
Revisiting the Concepts of Prebiotic and Prebiotic Effect in Light of Scientific and Regulatory Progress—A Consensus Paper From the Global Prebiotic Association.Advances in Nutrition, 15(12), 100329.
Read ReviewWu, R. Y., Määttänen, P., Napper, S., Scruten, E., Li, B., Koike, Y., Johnson-Henry, K. C., Pierro, A., Rossi, L., Botts, S. R., Surette, M. G., & Sherman, P. M. (2017).
Non-digestible oligosaccharides directly regulate host kinome to modulate host inflammatory responses without alterations in the gut microbiota.Microbiome, 5, 135.
Read ReviewKezer, G., Paramithiotis, S., Khwaldia, K., Harahap, I. A., Čagalj, M., Šimat, V., Smaoui, S., Elfalleh, W., Ozogul, F., & Esatbeyoglu, T. (2025).
A comprehensive overview of the effects of probiotics, prebiotics and synbiotics on the gut-brain axis.Frontiers in Microbiology, 16, 1651965.
Read ReviewYoo, S., Jung, C., Kwak, K., Kim, S., Yoo, S., Jung, C., Kwak, K., & Kim, S. (2024).
The Role of Prebiotics in Modulating Gut Microbiota: Implications for Human Health.International Journal of Molecular Sciences, 25(9).
Read ReviewKezer, G., Paramithiotis, S., Khwaldia, K., Harahap, I. A., Čagalj, M., Šimat, V., Smaoui, S., Elfalleh, W., Ozogul, F., & Esatbeyoglu, T. (2025).
A comprehensive overview of the effects of probiotics, prebiotics and synbiotics on the gut-brain axis.Frontiers in Microbiology, 16, 1651965.
Read ReviewGonzález-Velázquez, G., Aguirre-Garrido, J. F., Oros-Pantoja, R., Salinas-Velarde, I. D., Contreras, I., Estrada, J. A., & Soto-Piña, A. E. (2024).
Supplementation with inulin reverses cognitive flexibility alterations and modulates the gut microbiota in high-fat-fed mice.Frontiers in Behavioral Neuroscience, 18, 1445154.
Read ReviewAslam, H., Lotfaliany, M., So, D., Berding, K., Berk, M., Rocks, T., Hockey, M., Jacka, F. N., Marx, W., Cryan, J. F., & Staudacher, H. M. (2023).
Fiber intake and fiber intervention in depression and anxiety: A systematic review and meta-analysis of observational studies and randomized controlled trials.Nutrition Reviews, 82(12), 1678.
Read ReviewDash, S., Syed, Y. A., & Khan, M. R. (2022).
Understanding the Role of the Gut Microbiome in Brain Development and Its Association With Neurodevelopmental Psychiatric Disorders.Frontiers in Cell and Developmental Biology, 10, 880544.
Read ReviewYoo, S., Jung, C., Kwak, K., Kim, S., Yoo, S., Jung, C., Kwak, K., & Kim, S. (2024).
The Role of Prebiotics in Modulating Gut Microbiota: Implications for Human Health.International Journal of Molecular Sciences, 25(9).
Read ReviewMarkowiak, P., & Śliżewska, K. (2017).
Effects of Probiotics, Prebiotics, and Synbiotics on Human Health.Nutrients, 9(9), 1021.
Read Review